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Abstract 17 

Satellite observations have been widely used to examine afforestation effects on local surface 18 

temperature at large spatial scales. Different approaches, which lead potentially to differed 19 

definitions of the afforestation effect, have been used in previous studies. The results were used 20 

in climate model validation and were cited in climate synthesis reports, but large differences 21 

existed in these results. Such differences were simply treated as observational uncertainty, 22 

which can be an order of magnitude bigger than the signal itself. However, it remains unclear 23 

whether these differences arise from methodological differences that can be reconciled or they 24 

represent intrinsic uncertainty of land surface temperature change following afforestation. Here, 25 
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we provide a synthesis of three influential approaches (one estimates the actual effect and the 26 

other two the potential effect) used in the literature and use large-scale afforestation over China 27 

as a test case to examine whether the differences in the effects stem from methodological 28 

differences. We found that the actual effect (ΔTa) often relates to incomplete afforestation over 29 

a medium resolution satellite pixel (1km) for which LST is observed and that it increases with 30 

the fraction of the pixel actually afforested (89% variation in ΔTa being explained). One 31 

potential effect approach quantifies the impact of quasi-full afforestation (ΔTp1), whereas the 32 

other quantifies the potential impact of full afforestation (ΔTp2) by assuming a shift from 100% 33 

openland to 100% forest coverage. An initial paired-samples t-test shows that ΔTa < ΔTp1 < 34 

ΔTp2 for the cooling effect of afforestation ranging from 0.07K to 1.16K. But when all three 35 

methods are normalized for full afforestation, the observed range in surface cooling becomes 36 

much smaller (0.79K to 1.16K). While potential cooling effects could indeed be realized 37 

through full afforestation, they might not always be feasible, given other environmental 38 

constraints such as the high water consumption of forests and competition for land usage. 39 

Although potential cooling effects have a value in academic studies where they can be used to 40 

establish an envelope of effects, they are misleading in a policy-making context where the actual 41 

cooling effect better represents policy ambitions. 42 

  43 

Keywords: surface temperature change, afforestation, actual effect, potential effect, 44 

reconciliation, surface energy balance, China 45 

 46 

1 Introduction 47 

 48 

Afforestation has been and is still proposed as an effective strategy to mitigate climate change 49 

because forest ecosystems are able to sequester large amounts of carbon in their biomass and 50 
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soil, slowing the increase of atmospheric CO2 concentration (Fang et al., 2014; Pan et al., 2011). 51 

Additionally, forests regulate the exchange of energy and water between the land surface and 52 

the lower atmosphere through various biophysical effects, including radiative processes such 53 

as surface reflectance, and non-radiative processes such as evapotranspiration and sensible heat 54 

flux (Bonan, 2008; Juang et al., 2007). As the net result of the surface energy balance, land 55 

surface temperature (LST) is widely used to measure the local climatic impact of afforestation 56 

(Li et al., 2015; Winckler et al., 2019a).  57 

 58 

Climate model simulations and site-level observations have been utilized to explore the impact 59 

of forest dynamics on land surface temperature (Lee et al., 2011; Pitman et al., 2009; Swann et 60 

al., 2012). However, afforestation impacts on local LST derived from models tend to be highly 61 

uncertain as they are limited by the coarse spatial resolution of models and uncertainties in 62 

model parameters and processes (Oleson et al., 2013; Pitman et al., 2011), while insights from 63 

site-level assessments cannot be extrapolated to large spatial domains (Lee et al., 2011). 64 

Alternatively, remote sensing-based LST products enable the assessment of local LST changes 65 

due to forest dynamics on large spatial scales (Li et al., 2015; Shen et al., 2020). 66 

 67 

A number of studies investigated the surface temperature impact of afforestation based on 68 

satellite observations and they have been cited in high-level climate science synthesis reports 69 

(e.g., IPCC Special Report on Climate and Land authored by Jia et al., 2019), although there 70 

are large differences in afforestation impacts on LST among different methods. For example, 71 

Alkama and Cescatti (2016), found a cooling effect of about 0.02K from afforestation in 72 

temperate regions, while Li et al. (2015) reported a 0.27±0.03K ‘potential’ cooling from 73 

afforestation in the northern temperate zone (20–50° N) based on the ‘space-for-time’ method. 74 

In contrast, Duveiller et al. (2018) found a much stronger ‘potential’ cooling effect of 2.75K 75 
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for afforestation in the northern temperate region. While such differences were acknowledged 76 

in a recent modelling study (Winckler et al., 2019b), they were simply treated as observational 77 

uncertainty for climate model evaluation, with the uncertainty range being as big as, or even an 78 

order of magnitude larger than, the afforestation effect. However, it remains unclear whether 79 

these differences arise from methodological differences that can be reconciled or they indeed 80 

represent the intrinsic uncertainty of the afforestation impact on LST.  81 

 82 

Until now, studies using satellite data to investigate afforestation impact on surface temperature 83 

mainly focused on three methods. The first method, termed the ‘space-and-time’ approach (Fig. 84 

1, red box), aims to examine the actual, realized effect of afforestation (‘actual effect’) by 85 

isolating the forest cover change effect from the gross temperature change over time in places 86 

where forest cover change actually occurred (Alkama and Cescatti, 2016; Li et al., 2016a). The 87 

second method, termed the ‘space-for-time’ approach (Fig. 1, orange box), compares the 88 

surface temperature of forest with adjacent ‘openland’ (i.e., cropland or grassland) under similar 89 

environmental conditions (e.g., background climate and topography) and estimates the 90 

‘potential effect’ of afforestation if afforestation were to occur (Ge et al., 2019; Li et al., 2015; 91 

Peng et al., 2014). Note that such effects are often quantified using medium-resolution land-92 

cover datasets (typical resolution = 1km), which do not necessarily represent 100% ground 93 

coverage, and we therefore term such a potential effect a ‘mixed potential effect’.  94 

 95 

The third method, recently used by Duveiller et al. (2018), uses the ‘singular value 96 

decomposition’ technique (Fig. 1 green box), which is claimed to extract the hypothetical LST 97 

for different land-cover types by assuming a 100% coverage of the target cover type. The 98 

afforestation effect on LST is then quantified as the difference between the LST of a pixel with 99 

a hypothetical 100% forest coverage and the LST of an adjacent pixel with 100% openland 100 
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coverage. As with the second method, such an approach quantifies the ‘potential effect’ of 101 

afforestation, but in this case, it quantifies the ‘full potential effect’ by assuming transitions 102 

between land-cover types with 100% complete ground coverage. Given the aforementioned 103 

methodological differences and, in particular, the different definitions of afforestation impact 104 

on LST, confusion, if not misinterpretation, is expected when LST changes quantified using 105 

these different approaches are used for model evaluation or policy recommendation.  106 

 107 

This study develops detailed conceptual and methodological descriptions for each of the three 108 

approaches, and uses large-scale afforestation over China as a case study to compare the three 109 

approaches. We tested the following hypotheses: (1) The actual effect on LST increases with 110 

the area that has actually been afforested, defined as afforestation intensity (or Faff). (2) The 111 

actual effect is smaller than the potential effects. (3) When extending Faff to a hypothetical value 112 

of 100%, the actual effect approaches the potential effect. If proven, this third hypothesis 113 

implies that the LST impacts from different approaches could be reconciled given the same 114 

boundary condition of full afforestation. In that case, we then have a fourth hypothesis (4) 115 

stating that changes in underlying biophysical processes including radiation, sensible and latent 116 

heat fluxes that drive LST changes should also be reconciled among different methods. To keep 117 

the focus on reconciling methodological differences, only changes in the daytime surface 118 

temperature were considered in this study. Nevertheless, similar conclusions regarding the 119 

different approaches are expected for nighttime surface temperature.  120 

 121 
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 122 

Figure 1. Illustration of the three approaches to quantifying the local surface temperature effect 123 

of afforestation. (a) and (b) represent two nearby pixels, both classified as openland at time t1 124 

by medium-resolution satellites (1km spatial resolution), with one of them classified as forest 125 

at time t2 (i.e., having experienced afforestation) and the other unchanged. Note, neither of these 126 

pixels will have 100% complete coverage of either openland (i.e., grassland or cropland) or 127 

forest, but they will have been classified as either openland or forest by medium-resolution 128 

satellite products. (c) and (d) represent pixels with 100% forest or 100% openland coverage 129 

whose temperature can be derived from pixels of mixed land cover types by using the singular 130 

value decomposition (SVD) technique (Duveiller et al., 2018). The red dotted box describes the 131 

quantification of the ‘actual effect’ of afforestation (ΔTa) occurring from t1 to t2 by the ‘space-132 

and-time’ method. The orange box represents the ‘mixed potential effect’ determined by 133 

hypothesizing potential shifts between openland and forest based on the ‘space-for-time’ 134 

approach (ΔTp1). The green box represents the ‘full potential effect’ of afforestation (ΔTp2) 135 
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derived by hypothesizing a transition from 100% complete openland coverage to 100% 136 

complete forest coverage.  137 

 138 

2 Methods 139 

2.1 Three Approaches to Quantifying the Impacts of Afforestation on LST 140 

141 

Figure 2. Schematic overview of the processing steps. The different output results correspond 142 

to actual effect (ΔTa), mixed potential effect (ΔTp1) and full potential effect of afforestation 143 

(ΔTp2). 144 

 145 

2.1.1 Actual Effect of Afforestation (ΔTa) 146 

 147 

The ‘space-and-time’ approach assumes that the gross change in land surface temperature (ΔT) 148 

over a given time period during which afforestation occurred, contains both signals of 149 

temperature change due to afforestation (ΔTa) and background temperature variation (ΔTres) 150 

due to changes in large-scale circulation patterns (Alkama and Cescatti, 2016; Li et al., 2016a): 151 
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 a resΔT = ΔT +ΔT  (1)152 

where ΔT is the gross temperature change during the period from t1 to t2 for the pixel under 153 

study. ΔT can be calculated as the difference between LSTt2 and LSTt1, with LSTt2 being the 154 

surface temperature after afforestation and LSTt1 being that before afforestation. It thus follows 155 

that 156 

 a resΔT  = ΔT -ΔT  (2) 157 

ΔTres can be approximated by averaging changes in surface temperature for those pixels 158 

adjacent to the target afforestation pixel for which the forest cover remained constant between 159 

t1 and t2 (i.e., Faff =0%; section 2.2.2). Here, a search window of 11 km×11 km centered on the 160 

afforestation target pixel was used to derive ΔTres. Afforestation pixels and adjacent control 161 

pixels were both determined based on the net forest change between t1 and t2 using Global 162 

Forest Change data (Fig. 2; section 2.2.2).  163 

 164 

2.1.2 Mixed Potential Effect (ΔTp1) 165 

 166 

The ‘space-for-time’ method relies on the ‘space-substitute-for-time’ assumption to obtain the 167 

potential impact of afforestation on local temperature (Zhao and Jackson, 2014). By assuming 168 

that forest and openland share the same environmental conditions (background climate, 169 

topography, etc.) within a small spatial domain, the potential temperature effect of afforestation 170 

is examined using the search window method with a window size of up to 40km×40km (Ge et 171 

al., 2019; Li et al., 2015; Peng et al., 2014). Here, to be consistent with our ‘actual effect’ 172 

approach, a more conservative window size of 11km×11km was used, smaller than that used in 173 

the majority of previous studies (Ge et al., 2019; Li et al., 2015; Peng et al., 2014). In most 174 

previous studies, existing medium resolution (1km) land-cover maps were used directly. Such 175 

land-cover products rely on certain thresholds to classify satellite pixels into discrete land-cover 176 
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types. Given the widespread spatial heterogeneity in land-cover distribution, it is to be expected 177 

that only in rare cases will these medium-resolution pixels have 100% coverage of a given land-178 

cover type. Therefore, when determined in this way, the potential effect of afforestation has 179 

been named the ‘mixed potential effect’, in contrast to the ‘full potential effect’ which assumes 180 

a potential transition between land-cover types of 100% coverage that we will focus on in the 181 

next section.  182 

 183 

To ensure consistency with the land-cover data used in the ‘full potential effect’ approach (i.e., 184 

the SVD method), the GlobeLand30 land-cover map was aggregated from its original resolution 185 

(30m) to 1km resolution. The land-cover type assigned to a given 1km pixel during aggregation 186 

was based on the land-cover type of the majority of the 30m sub-pixels within the 1km pixel, 187 

to be consistent with the ideas behind the generation of medium-resolution land-cover products 188 

(section 2.2.2). A 1km forest pixel was then chosen as the target pixel and put at the center of a 189 

search window with dimensions 11km×11km. The ‘mixed potential effect’ of afforestation 190 

(ΔTp1) was defined as the difference between the temperature of the target pixel (LSTF) and the 191 

average temperature of all the surrounding openland pixels within the window (
'

OLST ): 192 

 '

p1 F OΔT  = LST -LST  (3) 193 

where LSTF is the surface temperature of the target forest pixel at t2, and 
'

OLST represents the 194 

elevation-corrected surface temperature of openland pixels at t2 within the search window. 195 

Given our search window size, ΔTp1 could be biased by the elevation difference between the 196 

target forest pixel and surrounding openland pixels. Therefore, a linear relationship was first 197 

fitted between the observed openland temperature, LSTO, and the elevation of the openland 198 

pixel (EleO). This fitted temperature lapse rate was then used to derive elevation-corrected 199 

openland temperature 
'

OLST : 200 
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 OO

'

O F-L +ST  = L l kST ΔE e  (4) 201 

where ΔEleF-O is the elevation difference between forest and openland pixels. The elevation is 202 

available from NASA’s Shuttle Radar Topography Mission (SRTM) data 203 

(https://lpdaac.usgs.gov/products/srtmgl1v003/).  204 

 205 

2.1.3 Full Potential Effect (ΔTp2) 206 

 207 

The full potential effect represents the temperature change due to hypothesizing a shift from 208 

100% openland to 100% forest coverage, and was determined here by employing the singular 209 

value decomposition (SVD) method used in Duveiller et al. (2018). The SVD technique 210 

assumes that the temperature observed for a pixel at 1km scale is a linear composition of the 211 

temperatures of different land-cover types at a finer resolution (in our study at a 30m resolution). 212 

For each 1km pixel, the observed temperature at 1km resolution can be written as the 213 

composition of the temperature of each component land-cover type and its corresponding 214 

fraction, based on the land-cover fractions derived from the 30m-resolution GlobeLand30 map 215 

(section 2.2). The temperature of each type of land cover was assumed constant within a search 216 

window of 11km × 11km. For each given search window, the following equations can be 217 

obtained: 218 

 

1 111 1

1

= 

m

n n nm m

y x x

y x x

    
    

    
        

 (5) 219 

where n is the total number of 1km pixels within the window, after accounting for the elevation 220 

difference (thus the maximum value of n is 121 given our 11km × 11km search window), m is 221 

the number of land-cover types, ijx refers to the fraction of land-cover type j in pixel i, βi222 

refers to the temperature of land cover type i. To minimize elevation impacts, the linear 223 
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regression relationship for a given 1km pixel was included only when the elevation difference 224 

between this pixel and the central pixel of the search window was smaller than 100m. Using 225 

matrix notation, Eq. (5) can be simplified to: 226 

 y = X β  (6) 227 

where the matrix X contains land-cover fraction for the n 1km pixels as an explanatory variable, 228 

the response variable y contains n LST observations, and the coefficient vector, β, contains the 229 

regression coefficients which show temperatures of different land-cover types. Note that this 230 

linear equation system cannot be readily solved simply because the matrix X is ‘closed’, i.e., 231 

by definition, the elements in each row of the matrix X add to 1. After removing the mean of 232 

each column (Zhang et al., 2007), the matrix X was transformed, by applying the SVD 233 

technique, to another matrix, Z, of reduced dimension (more details in Duveiller et al., 2018). 234 

After this transformation, we have the following: 235 

 
'y = Z β +ε  (7) 236 

and the β’ coefficient can be obtained from equation (8): 237 

 ( )
1

'  = Z Z yt t
−

   (8) 238 

However, the β’ vector calculated from the transformed matrix Z cannot directly provide 239 

surface temperatures for corresponding land-cover types. To obtain temperatures for each land-240 

cover type by assuming 100% ground coverage, an identity matrix Y with its dimension equal 241 

to the number of land-cover types must be constructed to represent the hypothetical case in 242 

which each 1km pixel was 100% covered by a single land-cover type. The same transformation 243 

as applied to the matrix X was then applied to Y, to obtain a transformed matrix Z’. Finally, the 244 

predicted temperature (
'

100%LST ) for each land-cover type assuming a 100% coverage was 245 

calculated as: 246 

 
' ' '

100%LST  = Z    (9) 247 
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For the central pixel of the local search window, ΔTp2 was defined as the difference between 248 

the predicted 
'

100%LST  for forest (
'

100%LST F ) and openland (
'

100%LST O ). 249 

 
' '

2 100% 100%ΔT  LST LSTp F O= −  (10) 250 

More details, including an illustration of the SVD method, can be found in Fig. 7 in Duveiller 251 

et al. (2018). 252 

 253 

2.2 Dataset and Processing 254 

2.2.1 The Test Case: Large-scale Afforestation over China 255 

 256 

China was selected as the test case for addressing the important methodological issues in 257 

quantifying land surface impacts of afforestation because afforestation is a key national strategy 258 

for sustainable development and climate mitigation (Bryan et al., 2018; Qi et al., 2013). 259 

According to the 8th National Forest Inventory conducted in 2013, China's afforestation area 260 

has reached 6.9×103 million ha, accounting for 33% of the total global afforestation area (Chen 261 

et al., 2019). Afforestation in China during 2000–2012 occurred mainly in regions with more 262 

than 400 mm of precipitation per year (Fig. 3a), which is considered a threshold below which 263 

there is a high risk of afforestation failing due to water limitation (Mátyás et al., 2013). China 264 

covers a wide range of latitude from 3.9° N to 53.6° N and its forest ecosystems cover an 265 

elevation range of 100m to 4000m. This wide range of climate zones, from tropical/subtropical 266 

to temperate and boreal, make it highly suitable for our methodological analysis because the 267 

impact of afforestation on LST might differ with latitude and background climate (Lee et al., 268 

2011; Alkama and Cescatti, 2016). Further justification for using China as a test case are the 269 

strongly diverging published LST impacts of afforestation there, ranging from an actual effect 270 

of -0.0036K decade-1 by Li et al. (2020) to a potential effect of -1.1K by Peng et al. (2014). 271 

 272 
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2.2.2 MODIS Dataset and Preparation 273 

 274 

In this study, the actual effect was estimated by combining the actual satellite-derived 275 

afforestation for 2000 to 2012 (see Section 2.2.2) with satellite-based estimates of biophysical 276 

variables for the periods 2002–2004 (t1) and 2010–2014 (t2). MODIS remote sensing products 277 

for land surface temperature (MOD11A2), albedo (MCD43B3) and evapotranspiration 278 

(MOD16A2) were used to characterize the biophysical effects (Table 1). The datasets were 279 

regridded to harmonize spatial (1km) and temporal (annual) resolutions (Table 1).  280 

 281 

The MOD11A2 product provides 8-day land surface temperature for 10:30 AM and 22:30 PM 282 

from the Terra satellite, but here we focused on daytime surface temperature. Only valid LST 283 

observations from the original data were used to compute the average daily values for a given 284 

year. Years for which more than 40% of daily data are missing were excluded from the analysis. 285 

Annual data were then aggregated to obtain the average annual temperature for periods t1 and 286 

t2. 287 

 288 

The MCD43B3 product provides white-sky and black-sky shortwave albedo at 16-day temporal 289 

resolution (Table1). The observed white-sky albedo was used as the daytime albedo (Peng et 290 

al., 2014). For evapotranspiration (ET), we used the ET band in MOD16A2, which includes 291 

water fluxes from soil evaporation, wet canopy evaporation and plant transpiration. To calculate 292 

the mean annual albedo and evapotranspiration for 2002–2004 (t1) and 2010–2014 (t2) we used 293 

the same approach as used for LST. 294 

 295 

2.2.3 Land-Cover Datasets and Processing 296 

 297 
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Two land-cover datasets were used in this study: the ‘actual effect’ approach was based on the 298 

Global Forest Change (GFC) dataset, while the ‘mixed potential effect’ and ‘full potential effect’ 299 

used the GlobeLand30 land-cover data (Table 1).  300 

 301 

The SVD technique, used in the ‘full potential effect’ approach, requires a land-cover map with 302 

a higher spatial resolution than the 1km spatial resolution of the LST data. The GlobeLand30 303 

product, which is based on Landsat images, provides land-cover information for China at a 30m 304 

resolution for the years 2000 and 2010 (Chen et al., 2015). Cultivated land and grassland in 305 

GlobeLand30 were classified as openland. Discrete land-cover type information at 30m 306 

resolution in 2010 was aggregated to obtain the area fractions of the different land-cover types 307 

at 1km resolution, which were then used to construct matrix X in Eq. (5) (Fig. 2). Furthermore, 308 

land-cover type information at the 1km scale was extracted, based on the vegetation type with 309 

area fraction >50% for every 1km×1km window. This data was then applied in the ‘space-for-310 

time’ method to identify forest and openland (Fig. 2). 311 

 312 

GlobeLand30 data is not suitable for detecting forest change (Zeng et al., 2021). The Global 313 

Forest Change (GFC) data, however, provides forest gain and forest loss at a spatial resolution 314 

of 30m between 2000 and 2012 and has been used for mapping global forest change (Hansen 315 

et al., 2013). Forest loss events were identified for each year between 2000 and 2012, but forest 316 

gain was only identified for the whole period, simply because forest loss is an abrupt change 317 

which can be effectively identified over short time periods, but forest gain is a gradual change 318 

which can only be confidently identified over longer time spans. Here, forest losses and gains 319 

from GFC were aggregated at a 1km resolution to obtain net forest change (defined as forest 320 

gain minus forest loss) during this period (Fig. 2). A positive net change indicates afforestation 321 

and the area percentage of afforestation for the 1km pixel area was defined as Faff. The land-322 
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cover type of pixels with Faff = 0% was considered to be stable. This net forest-change 323 

information was then used in the calculation of the actual afforestation-induced temperature 324 

effect (ΔTa)(Fig. 2). 325 

 326 

2.3 Decomposition of Changes in Surface Temperature 327 

 328 

Changes in surface temperature following forest-cover change are the net result of changes in 329 

underlying fluxes that collectively determine the land surface energy balance: 330 

 in out in out- - GΔSW ΔSW +ΔLW ΔLW =ΔH +ΔLE +Δ  (11) 331 

where ΔSWin, ΔSWout, ΔLWin, ΔLWout are the changes in incoming and outgoing shortwave 332 

and longwave radiation, respectively, and ΔH, ΔLE, and ΔG are changes in sensible heat flux, 333 

latent heat flux and ground heat flux, respectively. All the terms of Eq. (11) are expressed in 334 

Wm-2. 335 

 336 

Firstly, it can be reasonably assumed that ΔSWin≈0 and ΔLWin≈0, given that all three 337 

approaches consider only local effects on surface temperature by following a comparison of 338 

target pixels with surrounding control pixels, thus excluding feedbacks from, e.g., cloud 339 

formation (Duveiller et al., 2018). Changes in reflected shortwave radiation can be derived as: 340 

 out inΔSW = SW ×Δα  (12) 341 

where SWin is available from the CERES EBAF-Surface Product Ed 4.1 (Kato et al., 2018; Liu 342 

et al., 2018) (Table 1), and Δα is the surface albedo change. To approximate ΔLWout, we used 343 

its first order differential equation: 344 

 
3 4

B BΔLW = σ(4ε T ΔT+Δε T )out  (13) 345 
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where σ is Stefan-Boltzmann's constant (5.67×10−8 W m−2 K−4), T is daytime surface 346 

temperature and ΔT is the afforestation impact on surface temperature. Surface broadband 347 

emissivity, εB, is usually obtained from an empirical relationship (Zhang et al., 2019): 348 

 B 29 31 32ε =0.2122ε +0.3859ε +0.4029ε  (14) 349 

where ε29, ε31 and ε32 are obtained from the estimated emissivity for bands 29 (8,400–8,700 nm), 350 

31 (10,780–11,280 nm) and 32 (11,770–12,270 nm) in the MOD11C3 data (Duveiller et al., 351 

2018).  352 

 353 

Latent heat flux change (ΔLE) refers to changes in the energy used for evapotranspiration (ET, 354 

unit: mm d-1), which can be obtained from the change in evapotranspiration (ΔET): 355 

 
-2 -1)ΔLE =ΔET 28.94 W m /(mm d  (15) 356 

Therefore, the sum of sensible heat change and ground heat change (ΔH+ΔG) can be calculated 357 

as the difference between net radiation change and latent heat flux change (ΔLE) based on the 358 

Eq. (11). The afforestation effects on albedo (Δα), εB (ΔεB) and ET (ΔET) needed in the above 359 

equations were calculated in a similar way to ΔT for each of the three different approaches as 360 

described in section 2.1.  361 

 362 

2.4 Statistical Analysis 363 

 364 

Differences in the afforestation effects on LST of the three approaches were tested by 365 

performing paired-samples t-tests between pairs of approaches. The paired-samples t-test was 366 

used, rather than a normal t-test, to avoid the bias due to strong spatial heterogeneity in the LST 367 

effects of afforestation that could occur if the values of all pixels had been pooled together for 368 

a normal t-test. The pairing in the paired-samples t-test limits the analysis to only those pixels 369 

shared by all three approaches. The test was made using the ‘ttest_rel’ method from the 370 
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‘scipy.stats’ package in Python. The Bonferroni correction was applied to adjust the 371 

significance level (p-value) to mitigate the increasing the type I error when making multiple 372 

paired-samples t-test, which in our case involves three pairs. The Bonferroni correction sets the 373 

significance cut-off at α/k (with α as the p-value before correction and k as number of pairs). In 374 

this study, with 3 hypotheses tests (i.e., 3 pairs) and an original significance level α = 0.05, the 375 

adjust p-value is 0.0167. In order to investigate ΔTa in relation to the afforestation intensity, a 376 

linear regression was performed between ΔTa and Faff using the ordinary least squares method. 377 

 378 

Table 1 Summary of the datasets and their main characteristics 379 

Type Dataset Selected band Resolution Projection Timespan 

Forest change 

Global Forest 

Change 

Forest gain; 

Loss year 

30m, annual WGS84 2000–2012 

Land-cover 

type 

GlobeLand 30 

Land-cover 

type 

30m, — UTM 2000; 2010 

Land surface 

Temperature 

MOD11A2 

Daytime 

temperature  

1km, 8days sinusoidal 

2002–2004; 

2010–2014 

Albedo MCD43B3 

Albedo WSA 

shortwave 

1km, 16days sinusoidal 

2002–2004; 

2010–2014 

Incoming 

shortwave 

radiation  

CERES 

sfc_sw_down

_all_mon 

1°, monthly WGS84 

2002–2004; 

2010–2014 
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Surface 

broadband 

emissivity 

MOD11C3 

Emis_29; 

Emis_31; 

Emis_32 

0.05°, monthly sinusoidal 

2002–2004; 

2010–2014 

Evapotranspira

tion 

MOD16A2 ET_500m 500m, 8days sinusoidal 

2002–2004; 

2010–2014 

Elevation SRTM30 Be75 30m, —  WGS84 — 

 380 

3 Results 381 

3.1 Spatial Distribution of Afforestation and its Effect on Land Surface 382 

Temperature 383 

 384 

Afforestation areas are mainly located in the northeast, southwest and south of China where 385 

sufficient precipitation is available (Fig. 3a) and largely driven by afforestation of former 386 

cropland or abandoned cropland, with a relatively small contribution from forest regeneration 387 

or replanting following natural disturbance or timber harvest. One prominent feature of 388 

afforestation in China is its small afforestation patch, with most afforested pixels (1km2) having 389 

an afforestation fraction of less than 30% (Fig. 3b). Pixels with an afforestation intensity below 390 

10% account for 93% of the total number of pixels (Fig. 3b), representing 0.14 Mha or over 391 

half (55.6%) of the total afforestation area (Fig. 3b).  392 
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393 

Figure 3. (a) Spatial distribution of afforestation intensity (Faff) in China during 2000–2012. 394 

The solid black line crossing China is the 400mm annual precipitation isoline. (b) Frequency 395 

distribution of Faff and cumulative afforestation area with the increase in Faff. The red dashed 396 

line represents the cumulative afforestation area corresponding to Faff =10%. 397 

 398 

Although all three approaches result in similar spatial and latitudinal patterns regarding 399 

afforestation effects on LST (Fig. 4), their magnitudes differ substantially. The actual effect has 400 

the lowest temperature change, followed by the mixed potential effect, with the full potential 401 

effect showing the greatest temperature change (Fig. 4a–c). For the latitude range of 20–36° N 402 

where afforestation effects show a dominant cooling effect, the full potential effect (ΔTp2) 403 

reaches -1.75±0.01K, while the mixed potential effect (ΔTp1) was smaller at -0.96±0.00K, but 404 

both of them were much larger than the actual effect (ΔTa) of -0.09±0.00K. Similarly, the full 405 

potential effect (ΔTp2) showed the strongest warming effect (0.35±0.01K) in the area north of 406 

48° N, stronger than the mixed potential effect (0.22±0.01K), and again the actual effect is the 407 

smallest (0.07±0.01K). However, the three approaches largely converge regarding the latitude 408 

where the effects change from a warming to cooling effect (Fig. 4d). Between 40° N and 48° 409 

N, the afforestation effects are largely neutral, with the mean temperature change for the three 410 

approaches being 0.07±0.01K (ΔTa=-0.01±0.01K; ΔTp1=0.11±0.01K; ΔTp2=0.12±0.01K).  411 
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412 

Figure 4. Afforestation effects on LST quantified by three approaches: (a) actual effect based 413 

on a ‘space-and-time’ approach (ΔTa), (b) mixed potential effect based on a ‘space-for-time’ 414 

approach (ΔTp1) and (c) full potential effect assuming a transition from 100% openland 415 

coverage to 100% forest coverage using the SVD method (ΔTp2). The solid black line crossing 416 

China is the 400mm precipitation isoline. (d) Zonal averages of the annual mean daytime LST 417 

change within 2° latitudinal bins, with shaded areas representing the standard errors (SE). Note 418 

that in panel (d), ΔTa corresponds to the vertical axis on the left; ΔTp1 and ΔTp2 correspond to 419 

the vertical axis on the right. 420 

 421 

3.2 Reconciling Temperature Effects of Afforestation  422 

 423 

Even though the observed land surface temperature is assumed to be uniform for the 1km 424 

afforested satellite pixel, the underlying afforestation intensity varies substantially (Fig. 3a). 425 

This leads to our first hypothesis that for a 1km pixel, ΔTa should be influenced by the area 426 

fraction that has been afforested within the pixel (i.e., afforestation intensity or Faff). Indeed, the 427 
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actual daytime surface cooling increases significantly with afforestation intensity (Fig. 5), with 428 

a 0.079±0.017K (mean ± std) increase for each ten percent increase in Faff.  429 

430 

Figure 5. Changes in ΔTa as a function of afforestation intensity (Faff), defined as the fraction 431 

of afforested area to the total pixel area at a 1-km resolution. Error bars indicate the standard 432 

error of ΔTa within each ten percent bin of Faff. The red line represents the fitted linear 433 

regression line between ΔTa and Faff. 434 

 435 

The afforestation effects obtained from the three approaches were compared for each Faff 436 

interval (Fig. 6). When afforestation intensity is less than 60%, significant differences exist in 437 

the temperature change obtained by the three approaches, with ΔTa < ΔTp1 < ΔTp2. This result 438 

confirms our second hypothesis that the actual effect is expected to be smaller than potential 439 

effects. However, for pixels with relatively low Faff, the mixed potential effect is found to be 440 

smaller than the full potential effect, which is reasonable, but to our knowledge, has not been 441 

reported before. When the afforestation intensity is greater than 60%, the significant difference 442 

in cooling effect between the different approaches disappears, likely because afforestation 443 

intensity, and the associated forest coverage at 1km resolution, reach high values, i.e., allowing 444 

the ‘potential’ effects to actually be realized given a high enough afforestation intensity. 445 

 446 
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447 

Figure 6. Comparison of ΔT for the three approaches for bins of afforestation intensity. Error 448 

bars are given as the standard error and different letters indicate that ΔT calculated by the two 449 

approaches concerned are significantly different with the adjust p-value after applying the 450 

Bonferroni correction with multiple paired-samples t-tests. 451 

 452 

When considering the overall differences in ΔT from the three approaches, irrespective of the 453 

afforestation intensity, ΔTa (-0.07±0.00K) over China was significantly lower than ΔTp1 (-454 

0.63±0.00K), which is further significantly lower than ΔTp2 (-1.16±0.01K) (p < 0.05, paired-455 

samples t-test, n= 96,058), once again confirming our second hypothesis (Fig. 7). Moreover, 456 

extrapolation of the relationship shown in Fig. 5 suggests that ΔTa would reach -0.79±0.17K 457 

(mean ± std) if a 1km pixel was 100% afforested, which is conceptually comparable to the 458 

potential effects and it was indeed found to be higher than ΔTp1 but lower than ΔTp2. This result 459 

confirms our third hypothesis and demonstrates that the potential cooling effect could indeed 460 

be reached when a pixel is fully afforested. 461 

 462 
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Figure 7. Comparison of ΔT for the three approaches, irrespective of the afforestation intensity. 463 

Error bars are given as the standard error and different letters indicate ΔT being significantly 464 

different (p = 0.0167, paired-samples t-test, n = 96,058). For comparison, the predicted ΔTa 465 

with Faff reaching 100%, which is conceptually comparable with ΔTp1 and ΔTp2, is also shown. 466 

 467 

3.3 Reconciling Changes in Surface Energy Fluxes by Afforestation 468 

 469 

In order to investigate whether the underlying surface energy fluxes could be reconciled 470 

following the reconciliation of the LST changes, changes in surface energy fluxes due to 471 

afforestation were quantified using each of the three approaches, under the same boundary 472 

conditions as for full afforestation (i.e., changes following the ‘actual effect’ approach were 473 

extended for Faff = 100%). As illustrated in Fig. 8, changes in all the relevant surface energy 474 

fluxes under the three different approaches have the same direction, with similar magnitudes, 475 

confirming the reconciliation of the different approaches in terms of surface energy fluxes. 476 

More specifically, the three approaches converge on a reduction in reflected shortwave 477 

radiation (ΔSWout) of 0.56~1.23 W m-2 due to the lower albedo of forest compared to openland 478 

(Figure A2). Meanwhile, emitted longwave radiation (ΔLWout) was reduced by 1.03~3.10 W 479 
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m-2 and sensible and ground heat fluxes (ΔH+ΔG) reduced by 4.84~6.14 W m-2. All these 480 

reduced fluxes were offset by an increased latent heat flux of 7.99~8.41 W m-2 (ΔLE), the single 481 

energy flux leading to surface cooling. 482 

 483 

Figure 8. Afforestation-induced changes in surface energy fluxes (Wm-2) following the three 484 

approaches: (a) actual effect based on a ‘space-and-time’ approach, (b) mixed potential effect 485 

using medium-resolution land cover maps based on a ‘space-for-time’ approach and (c) full 486 

potential effect assuming a transition from 100% openland coverage to 100% forest coverage 487 

using the SVD method. For each approach, changes were calculated for the reflected shortwave 488 

radiation (SWout), outgoing longwave radiation (LWout), latent heat flux (LE) and the 489 

combination of sensible and ground heat fluxes (H+G). No changes were assumed for incoming 490 

shortwave and longwave radiation. Changes in energy fluxes for the ‘actual effect’ approach 491 

have been adjusted to the condition of full afforestation (i.e., Faff = 100%) in a similar way as 492 

for the ‘predicted ΔTa’ in Fig. 7, by fitting linear regressions between energy flux variables and 493 

Faff (Figure A1). 494 

 495 

4 Discussion 496 

 497 

The three approaches (Li et al., 2015; Alkama and Cescatti, 2016; Duveiller et al., 2018) used 498 

to quantify local surface temperature change following forest-cover change and presented with 499 
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details in this study, have been cited over 919 times in research papers (Web of Science, 500 

December 2021) and in high-level climate science synthesis reports. Despite the apparently 501 

large differences in temperature effect among them, to our knowledge, no studies have 502 

examined whether these differences can be reconciled or whether they represent intrinsic 503 

differences. This study fills that gap by comparing the three approaches for a single study case, 504 

i.e., large-scale afforestation in China. China is highly suitable for the purpose of this study as 505 

the size of an afforestation patch is, in general, smaller than the spatial resolution (1km) at 506 

which the temperature effects of afforestation were conducted in the previous studies describing 507 

the three approaches (Li et al., 2015; Alkama and Cescatti, 2016; Duveiller et al., 2018). Hence, 508 

the difference between the actual and potential temperature effects is expected to be large.  509 

 510 

Indeed, we found surface cooling following afforestation was much less when estimated as the 511 

actual effect (ΔTa) compared to the potential effects (ΔTp1 and ΔTp2). This lower ΔTa has been 512 

attributed to incomplete afforestation at a 1km resolution, at which potential effects are 513 

quantified by assuming complete afforestation (i.e., a complete shift from openland to forest). 514 

Consistent with our first hypothesis, the afforestation fraction at a 1km resolution explained 89% 515 

of the variation in ΔTa, making it a key determinant of the surface cooling following 516 

afforestation (Fig. 5). This finding is in line with the fundamental fact that surface temperature 517 

can be largely treated as an extensive variable: a variable whose whole pixel value of a given 518 

property is strongly determined by the area fractions of its different components, with each 519 

component having a unique value for the given property. The observation that surface 520 

temperature is an extensive variable served as the theoretical foundation for the SVD technique 521 

to derive the full potential effect (Duveiller et al., 2018).  522 

 523 
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Modelling (Li et al., 2016b) as well as satellite-based (Alkama and Cescatti, 2016) studies have 524 

found that temperature change after afforestation (or deforestation) is highly sensitive to the 525 

fraction of the model grid cell or satellite pixel that is subjected to afforestation (or 526 

deforestation), echoing our finding that ΔTa significantly changes with Faff. In addition, we 527 

provide strong evidence in support of our third hypothesis that when Faff reaches 100%, the 528 

expected actual effect is comparable to the potential effects (Fig. 7). This finding shows that 529 

the three approaches compared in this study are consistent when the same boundary condition, 530 

i.e., full afforestation, is applied, and demonstrates that all three methods are mutually 531 

compatible. It is, therefore, the basis of the reconciliation of the three approaches. Meanwhile, 532 

it highlights that the actual afforestation area must be considered when evaluating climate 533 

mitigation effects of afforestation. 534 

 535 

Our results also show that the mixed potential effect (ΔTp1) is smaller than the full potential 536 

effect (ΔTp2) (Fig. 6, Fig. 7). We suspect that this phenomenon likely also relates to the 537 

incomplete forest coverage for the identified forest pixels at the 1km scale used in the ‘space-538 

for-time’ analysis, because a threshold value of 50% forest cover was used when upscaling the 539 

30m land-cover map to 1km resolution. This threshold, however, is consistent with the 540 

commonly applied value in land-cover classification based on medium resolution satellite 541 

images, such as MCD12Q1, which uses a tree coverage value of 60% to identify forest pixels 542 

(Sulla-Menashe and Friedl, 2018). For the purpose of comparison, we also calculated the mixed 543 

potential effect based on the MCD12Q1 land-cover map but using the same LST data. The 544 

result shows that potential effects derived using MCD12Q1 data versus those derived using 545 

spatially upscaled GlobeLand30 data are almost identical (Figure A3), lending credibility to our 546 

estimated ΔTp1 in comparison to previous studies using MODIS land-cover data (Li et al., 2015). 547 

Progressively increasing the forest-cover threshold from 50% to 90% steadily increases ΔTp1 548 
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from -0.62±0.02K to -0.75±0.02K (Figure A4). Further increasing the thresholds used to 549 

identify 1km-resolution openland pixels from 50% to 90% increases ΔTp1 from -0.63±0.00K to 550 

-1.10±0.02K (Figure A5), bringing ΔTp1 even closer to ΔTp2 (-1.16±0.01K). This adds further 551 

support to the compatibility of the three approaches given the same boundary condition, i.e., 552 

the complete transformation from full openland to full forest coverage. 553 

 554 

Previous analyses have documented latitudinal patterns of surface temperature change induced 555 

by afforestation (Alkama and Cescatti, 2016; Li et al., 2015, 2016a; Peng et al., 2014). When 556 

comparing the three approaches for a single case study, consistent latitudinal patterns of local 557 

surface temperature effects following afforestation are observed (Fig. 4). Notably, all three 558 

approaches show a warming effect in the northern high latitudes and an opposite cooling effect 559 

in the southern low latitudes, with a largely neutral effect in the 40–48° N latitude band, 560 

providing further evidence that the three approaches are compatible. In particular, although the 561 

three approaches used different land-cover maps, they derived consistent LST impacts 562 

following afforestation, which highlights that the reconciling provided in this study is rather 563 

robust and is unlikely dependent on the land cover datasets used. 564 

 565 

In addition to the reconciliation of the land surface temperature change, we checked and 566 

confirmed that the changes in surface energy fluxes that underlie and drive the changes in 567 

surface temperature are compatible under the boundary condition of full afforestation. This 568 

finding confirms the inherent consistency in the three approaches and clarifies the reasons 569 

behind the apparent discrepancies in existing studies as discussed in the introduction. 570 

Nonetheless, when it comes to the biophysical impacts of afforestation in the real world, our 571 

findings have far-reaching implications. Although the ‘potential effect’ of afforestation could 572 

indeed be reached, the condition of full afforestation might not be feasible in reality. For 573 
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example, a complete afforestation of semi-arid Loess Plateau in the northwest of China is 574 

predicted to generate a surface cooling effect of 2.40±0.07K, but substantial afforestation efforts 575 

over the past 4 decades in that region have only realized a cooling of 0.11±0.01K as measured 576 

by the ‘actual effect’. Because of greater water consumption by forest compared to openland 577 

and the need to maintain land area for food production, achieving the full cooling potential may 578 

not be feasible (Huang et al., 2018; Liu and She, 2012; Liang et al., 2019).  579 

 580 

Whereas potential cooling effects have a value in academic studies where they can serve to 581 

establish the envelope of effects, they are misleading in a policy-making context where the 582 

actual cooling effect better represents policy-ambitions. The analog could also be made for the 583 

effects of the surface energy impacts of afforestation. Taking 10% as the afforestation intensity 584 

threshold to compare the cumulative surface energy effect between the actual and potential 585 

approaches, actual cumulative biophysical changes (5.06 EJ) for 2000–2012 are much smaller 586 

than mixed potential changes (20.13 EJ) and full potential change (19.02 EJ) (Figure A6). Again, 587 

this shows that simply using the potential effects for policy making or evaluation risks greatly 588 

overestimating the biophysical effects of afforestation. 589 

 590 

5 Conclusions 591 

In this study we provided a synthesis of the three influential methods used to quantify 592 

afforestation impact on surface temperature change and provided evidence that these different 593 

methods could in fact be reconciled. The actual effect of surface temperature change following 594 

afforestation was highly dependent on the intensity of afforestation (Faff), which explained 89% 595 

of the variation in ΔTa. With the common boundary condition of full afforestation being applied, 596 

differences in afforestation impacts on LST reported by the three methods in previous studies 597 

greatly reduced, showing that simply treating these differences as uncertainty is incorrect and 598 
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could greatly overestimate the uncertainty. In other words, when full afforestation is assumed, 599 

actual effect approaches the potential effect, demonstrating the effectiveness of the ‘space-for-600 

time’ approach and that potential cooling effect of afforestation could be indeed realized. 601 

However, due to the environmental constraints such as water availability and land scarcity, 602 

large-scale full afforestation might not always be feasible. In this case, potential effect would 603 

provide an envelop of the effects of afforestation but only the actual effect has a direct policy 604 

relevance in evaluating the climate effects of afforestation projects. 605 

 606 

 607 

 608 

 609 

 610 

 611 

 612 

 613 

 614 

 615 

 616 

 617 

 618 

 619 

 620 

 621 

 622 

 623 
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Appendix A 624 

 625 

Figure A1. Changes of actual effect in (a) ΔLW, (b) ΔSW, (c) ΔH+ΔG and (d) ΔLE (W m-2) 626 

as a function of afforestation intensity (Faff) following the ‘actual effect’ approach. Error bars 627 

indicate the standard error within each ten percent bin of Faff. The solid black lines represent 628 

the fitted linear regression line between each energy flux variable and Faff. 629 

  630 
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  631 

Figure A2. Spatial distribution of afforestation-induced changes in albedo (α) over China from 632 

three approaches: (a) Actual albedo change following afforestation based on ‘space-and-time’ 633 

method (Δαa), (b) mixed potential albedo change using medium-resolution land-cover maps 634 

based on ‘space-for-time’ approach (Δαp1) and (c) full potential effect (Δαp2) based on SVD 635 

approach. 636 

  637 

 638 

Figure A3. The mixed potential effects (ΔTp1) obtained based on MODIS land-cover data 639 

(MCD12Q1) and the land-cover distribution map defined at the threshold of 50% GlobeLand30 640 

(GLC30) at 1 km resolution. 641 

 642 

 643 

 644 

 645 
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  646 

Figure A4. The influence of the forest-cover threshold applied to the land-cover map 647 

underlying the estimation of the mixed potential effect (ΔTp1).  648 

  649 

  650 

Figure A5. The influence of the openland-cover threshold used to identify a 1km pixel as 651 

openland in the estimation of the mixed potential effect (ΔTp1). 652 

  653 

  654 

Figure A6. Afforestation-induced cumulative changes in surface energy fluxes (exaJoules) in 655 

China for the period 2000–2012 following the approaches of (a) actual effect, (b) mixed 656 

potential effect and (c) full potential effect. 657 

 658 
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Data availability 659 

All datasets used in this study are summarized in Table 1 and are openly available. Albedo, 660 

transpiration and surface temperature can be accessed at (https://modis.gsfc.nasa.gov/data/). 661 

Global Forest Change is available from https://earthenginepartners.appspot.com/science-2013-662 

global-forest/. The land-cover type dataset (GlobeLand30) can be downloaded from 663 

http://www.globallandcover.com/. Incoming shortwave radiation can be accessed at 664 

https://ceres.larc.nasa.gov/data/. The elevation is available from NASA’ s Shuttle Radar 665 

Topography Mission (SRTM) data (https://lpdaac.usgs.gov/products/srtmgl1v003/). 666 

Intermediate data and scripts used to generate the results in this study are available from the 667 

corresponding author upon reasonable request. 668 
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